metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22.58(D4×D5), C2.C42⋊1D5, (C22×D5).102D4, (C22×C4).297D10, C2.8(C42⋊D5), C5⋊2(C23.34D4), C10.10C42⋊1C2, D10.34(C22⋊C4), C22.33(C4○D20), (C22×C20).12C22, (C23×D5).93C22, C23.254(C22×D5), C10.23(C42⋊C2), C2.2(D10.13D4), C2.3(D10.12D4), C22.35(D4⋊2D5), (C22×C10).289C23, C22.16(Q8⋊2D5), C10.8(C22.D4), (C22×Dic5).13C22, (C2×C4×D5)⋊12C4, C2.6(D5×C22⋊C4), C22.88(C2×C4×D5), (C2×C4).124(C4×D5), (D5×C22×C4).12C2, (C2×C20).315(C2×C4), C2.7(C4⋊C4⋊7D5), (C2×C10).198(C2×D4), C10.44(C2×C22⋊C4), (C2×D10⋊C4).3C2, (C22×D5).92(C2×C4), (C2×C10).182(C4○D4), (C5×C2.C42)⋊18C2, (C2×C10).149(C22×C4), (C2×Dic5).132(C2×C4), SmallGroup(320,291)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22.58(D4×D5)
G = < a,b,c,d,e,f | a2=b2=c4=e5=f2=1, d2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fcf=bc=cb, bd=db, be=eb, bf=fb, dcd-1=abc-1, ce=ec, de=ed, df=fd, fef=e-1 >
Subgroups: 862 in 218 conjugacy classes, 71 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C22⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2.C42, C2.C42, C2×C22⋊C4, C23×C4, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23.34D4, D10⋊C4, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×Dic5, C22×C20, C22×C20, C23×D5, C10.10C42, C10.10C42, C5×C2.C42, C2×D10⋊C4, D5×C22×C4, C22.58(D4×D5)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, D10, C2×C22⋊C4, C42⋊C2, C22.D4, C4×D5, C22×D5, C23.34D4, C2×C4×D5, C4○D20, D4×D5, D4⋊2D5, Q8⋊2D5, C42⋊D5, D5×C22⋊C4, D10.12D4, C4⋊C4⋊7D5, D10.13D4, C22.58(D4×D5)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 156 36 121)(2 157 37 122)(3 158 38 123)(4 159 39 124)(5 160 40 125)(6 151 31 126)(7 152 32 127)(8 153 33 128)(9 154 34 129)(10 155 35 130)(11 146 26 131)(12 147 27 132)(13 148 28 133)(14 149 29 134)(15 150 30 135)(16 141 21 136)(17 142 22 137)(18 143 23 138)(19 144 24 139)(20 145 25 140)(41 96 76 101)(42 97 77 102)(43 98 78 103)(44 99 79 104)(45 100 80 105)(46 91 71 106)(47 92 72 107)(48 93 73 108)(49 94 74 109)(50 95 75 110)(51 86 66 111)(52 87 67 112)(53 88 68 113)(54 89 69 114)(55 90 70 115)(56 81 61 116)(57 82 62 117)(58 83 63 118)(59 84 64 119)(60 85 65 120)
(1 91 11 81)(2 92 12 82)(3 93 13 83)(4 94 14 84)(5 95 15 85)(6 96 16 86)(7 97 17 87)(8 98 18 88)(9 99 19 89)(10 100 20 90)(21 111 31 101)(22 112 32 102)(23 113 33 103)(24 114 34 104)(25 115 35 105)(26 116 36 106)(27 117 37 107)(28 118 38 108)(29 119 39 109)(30 120 40 110)(41 131 51 121)(42 132 52 122)(43 133 53 123)(44 134 54 124)(45 135 55 125)(46 136 56 126)(47 137 57 127)(48 138 58 128)(49 139 59 129)(50 140 60 130)(61 151 71 141)(62 152 72 142)(63 153 73 143)(64 154 74 144)(65 155 75 145)(66 156 76 146)(67 157 77 147)(68 158 78 148)(69 159 79 149)(70 160 80 150)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)(81 110)(82 109)(83 108)(84 107)(85 106)(86 105)(87 104)(88 103)(89 102)(90 101)(91 120)(92 119)(93 118)(94 117)(95 116)(96 115)(97 114)(98 113)(99 112)(100 111)(121 160)(122 159)(123 158)(124 157)(125 156)(126 155)(127 154)(128 153)(129 152)(130 151)(131 150)(132 149)(133 148)(134 147)(135 146)(136 145)(137 144)(138 143)(139 142)(140 141)
G:=sub<Sym(160)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,156,36,121)(2,157,37,122)(3,158,38,123)(4,159,39,124)(5,160,40,125)(6,151,31,126)(7,152,32,127)(8,153,33,128)(9,154,34,129)(10,155,35,130)(11,146,26,131)(12,147,27,132)(13,148,28,133)(14,149,29,134)(15,150,30,135)(16,141,21,136)(17,142,22,137)(18,143,23,138)(19,144,24,139)(20,145,25,140)(41,96,76,101)(42,97,77,102)(43,98,78,103)(44,99,79,104)(45,100,80,105)(46,91,71,106)(47,92,72,107)(48,93,73,108)(49,94,74,109)(50,95,75,110)(51,86,66,111)(52,87,67,112)(53,88,68,113)(54,89,69,114)(55,90,70,115)(56,81,61,116)(57,82,62,117)(58,83,63,118)(59,84,64,119)(60,85,65,120), (1,91,11,81)(2,92,12,82)(3,93,13,83)(4,94,14,84)(5,95,15,85)(6,96,16,86)(7,97,17,87)(8,98,18,88)(9,99,19,89)(10,100,20,90)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(81,110)(82,109)(83,108)(84,107)(85,106)(86,105)(87,104)(88,103)(89,102)(90,101)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(121,160)(122,159)(123,158)(124,157)(125,156)(126,155)(127,154)(128,153)(129,152)(130,151)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,156,36,121)(2,157,37,122)(3,158,38,123)(4,159,39,124)(5,160,40,125)(6,151,31,126)(7,152,32,127)(8,153,33,128)(9,154,34,129)(10,155,35,130)(11,146,26,131)(12,147,27,132)(13,148,28,133)(14,149,29,134)(15,150,30,135)(16,141,21,136)(17,142,22,137)(18,143,23,138)(19,144,24,139)(20,145,25,140)(41,96,76,101)(42,97,77,102)(43,98,78,103)(44,99,79,104)(45,100,80,105)(46,91,71,106)(47,92,72,107)(48,93,73,108)(49,94,74,109)(50,95,75,110)(51,86,66,111)(52,87,67,112)(53,88,68,113)(54,89,69,114)(55,90,70,115)(56,81,61,116)(57,82,62,117)(58,83,63,118)(59,84,64,119)(60,85,65,120), (1,91,11,81)(2,92,12,82)(3,93,13,83)(4,94,14,84)(5,95,15,85)(6,96,16,86)(7,97,17,87)(8,98,18,88)(9,99,19,89)(10,100,20,90)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(81,110)(82,109)(83,108)(84,107)(85,106)(86,105)(87,104)(88,103)(89,102)(90,101)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(121,160)(122,159)(123,158)(124,157)(125,156)(126,155)(127,154)(128,153)(129,152)(130,151)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,156,36,121),(2,157,37,122),(3,158,38,123),(4,159,39,124),(5,160,40,125),(6,151,31,126),(7,152,32,127),(8,153,33,128),(9,154,34,129),(10,155,35,130),(11,146,26,131),(12,147,27,132),(13,148,28,133),(14,149,29,134),(15,150,30,135),(16,141,21,136),(17,142,22,137),(18,143,23,138),(19,144,24,139),(20,145,25,140),(41,96,76,101),(42,97,77,102),(43,98,78,103),(44,99,79,104),(45,100,80,105),(46,91,71,106),(47,92,72,107),(48,93,73,108),(49,94,74,109),(50,95,75,110),(51,86,66,111),(52,87,67,112),(53,88,68,113),(54,89,69,114),(55,90,70,115),(56,81,61,116),(57,82,62,117),(58,83,63,118),(59,84,64,119),(60,85,65,120)], [(1,91,11,81),(2,92,12,82),(3,93,13,83),(4,94,14,84),(5,95,15,85),(6,96,16,86),(7,97,17,87),(8,98,18,88),(9,99,19,89),(10,100,20,90),(21,111,31,101),(22,112,32,102),(23,113,33,103),(24,114,34,104),(25,115,35,105),(26,116,36,106),(27,117,37,107),(28,118,38,108),(29,119,39,109),(30,120,40,110),(41,131,51,121),(42,132,52,122),(43,133,53,123),(44,134,54,124),(45,135,55,125),(46,136,56,126),(47,137,57,127),(48,138,58,128),(49,139,59,129),(50,140,60,130),(61,151,71,141),(62,152,72,142),(63,153,73,143),(64,154,74,144),(65,155,75,145),(66,156,76,146),(67,157,77,147),(68,158,78,148),(69,159,79,149),(70,160,80,150)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61),(81,110),(82,109),(83,108),(84,107),(85,106),(86,105),(87,104),(88,103),(89,102),(90,101),(91,120),(92,119),(93,118),(94,117),(95,116),(96,115),(97,114),(98,113),(99,112),(100,111),(121,160),(122,159),(123,158),(124,157),(125,156),(126,155),(127,154),(128,153),(129,152),(130,151),(131,150),(132,149),(133,148),(134,147),(135,146),(136,145),(137,144),(138,143),(139,142),(140,141)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D5 | C4○D4 | D10 | C4×D5 | C4○D20 | D4×D5 | D4⋊2D5 | Q8⋊2D5 |
kernel | C22.58(D4×D5) | C10.10C42 | C5×C2.C42 | C2×D10⋊C4 | D5×C22×C4 | C2×C4×D5 | C22×D5 | C2.C42 | C2×C10 | C22×C4 | C2×C4 | C22 | C22 | C22 | C22 |
# reps | 1 | 3 | 1 | 2 | 1 | 8 | 4 | 2 | 8 | 6 | 8 | 16 | 4 | 2 | 2 |
Matrix representation of C22.58(D4×D5) ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 15 |
0 | 0 | 0 | 0 | 17 | 21 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 12 |
0 | 0 | 0 | 0 | 0 | 1 |
6 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
35 | 1 | 0 | 0 | 0 | 0 |
6 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,9,0,0,0,0,9,0,0,0,0,0,0,0,20,17,0,0,0,0,15,21],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,12,1],[6,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[35,6,0,0,0,0,1,6,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;
C22.58(D4×D5) in GAP, Magma, Sage, TeX
C_2^2._{58}(D_4\times D_5)
% in TeX
G:=Group("C2^2.58(D4xD5)");
// GroupNames label
G:=SmallGroup(320,291);
// by ID
G=gap.SmallGroup(320,291);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,422,387,58,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=e^5=f^2=1,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*c*f=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=a*b*c^-1,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations